

June 24, 2025

Drip Dispersal

Innovative Wastewater Disposal in the Region for over 25 years

Presented by: Rob Sarmanian

Today's Session

- Types of Drip Systems in New England
- Drip Dispersal Concept
- Unique Applications
- Drip Dispersal at MASSTC

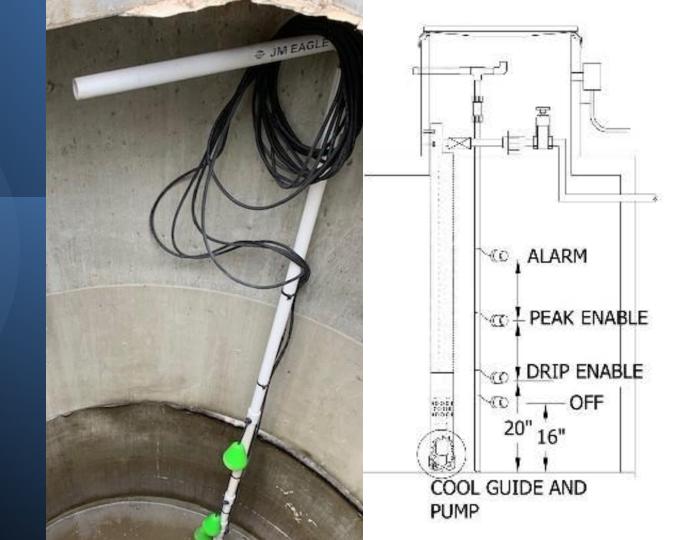
Two Regional Drip Systems

 Follows Secondary Treatment
 Systems meeting effluent quality of 30/30 mg/L BOD/TSS • Approved for Primary Effluent or Secondary Treatment disposal in all New England States

Brief History of Drip Dispersal


Drip Dispersal Advantages

- Preserve trees, lawn and landscape
- Slope follows contour of land
- Finished height as low as 6" above drip tubing
- Septic tank effluent or treated effluent: all size and offset advantages of treatment systems can be used. See approvals
- Equivalent to pressure distribution
- Time dosing
- Flexible reserve area requirements



Drip Dispersal System Components

Effluent Pump

4 Float Timer-Based System

Filtration



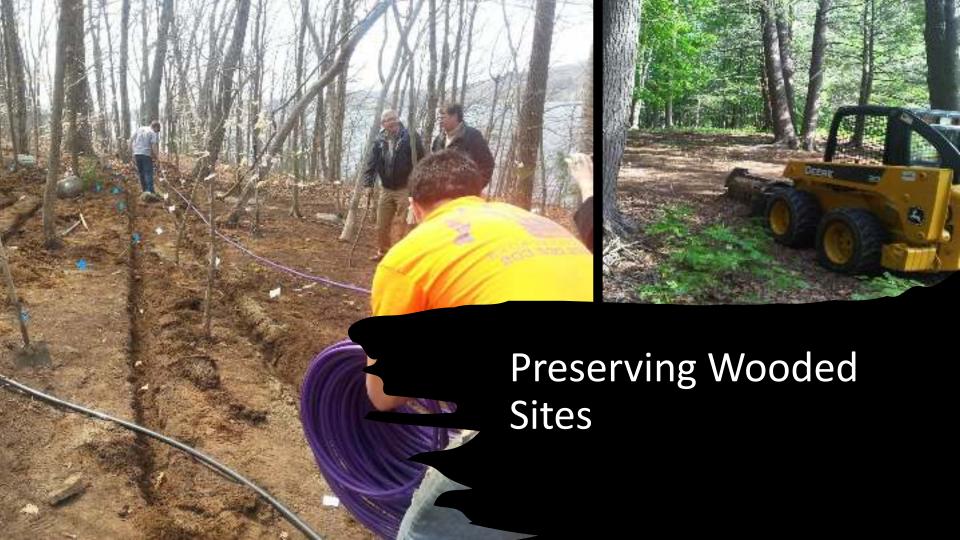
Control Panel

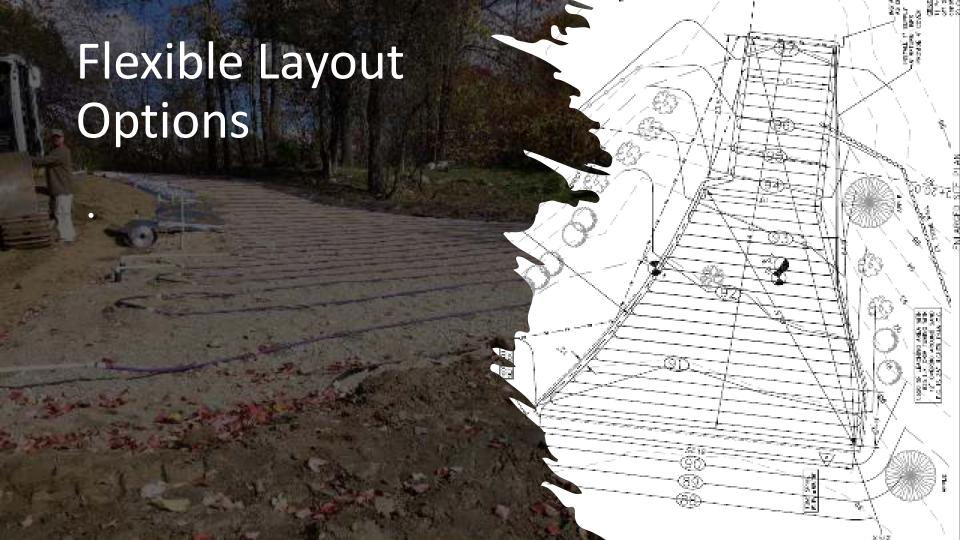
Drip Dispersal Design

All 6 New England States have design criteria in state regulations (small flows)

Large flow projects (GDP) are prevalent in region

See your local state rules or drip dispersal vendor





Working around site features

Challenging Sites

Plowed and Trenched Installations

Current and Future Large Flow Examples

Current:

- Bennington, NH 48,000 gpd (2009)
- Westford, MA 43,500 gpd (2011)
- Portsmouth, RI 67,000 gpd (2015)
- Bridgton, ME 116,500 gpd (2023)
- Old Saybrook, CT 30,000 gpd (April 2025)
- Casco, ME 40,000 gpd (May 2025)

Future:

- Windham, ME 320,000 gpd (January 2026)
- Montgomery, VT 30,000 gpd (May 2026)
- Wolcott, VT 30,000 gpd (September 2026)

MASSTC

Massachusetts Alternative Septic System Test Center

science in ACTION

www.epa.gov/research

INNOVATIVE RESEARCH FOR A SUSTAINABLE FUTURE

SCIENCE TO ACHIEVE RESULTS (STAR) RESEARCH GRANTS PROGRAM

The U.S. Environmental Protection Agency's (EPA) Science to Achieve Results (STAR) Program aims to stimulate and support scientific and engineering research that advances EPA's mission to protect human health and the environment. It is a competitive, peer-reviewed, extramural research program that provides access to the nation's best scientists and engineers in academic and other nonprofit research institutions. The STAR program funds research on the environmental and public health effects of air quality, environmental changes water amility and auantity

What makes drip dispersal a candidate for consideration as a treatment technology? about the same and a same and a same and a same Diverse Biological Commu Plant uptake and phytoremediation Complex rhizoshpere Adsorption interactions Transformation Complexation Dilution **Bacterial Utilization**

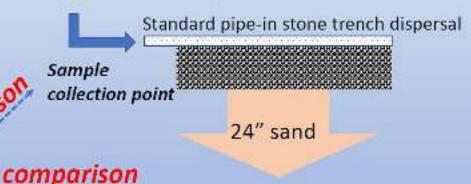
Mechanically did not work consistently...

Perc-Rite® DRIP DISPERSAL

(and standard pipe-in-stone trench following septic tank)

Septic tank effluent

Perc-Rite drip dispersal


24" sand

Sample collection point

ADVANCED ONSITE TREATMENT TECHNOLOGIES

Advanced Treatment Units Compared

- Recirculating media filter
- Sequencing batch reactor
- Activated sludge treatment

Sample collection point

The study done presented an unprecedented opportunity to compare selected advanced treatment modes with the drip dispersal of septic tank effluent in conjunction with 24 inches of soil media.

CERTIFICATE OF ANALYSIS

Barnstable County Health Laboratory (M-MA009)

Recipient:

Cakson

6 Sargent St.

Ofnicester, MA 01930

Order No...

G22234115

Report Dated: Submitter

09/07/2022 Oakson:

Description:

Field Sand & Loam TF, 900

Laboratory ID#: 22234115-01

Sample #:

Collection Address: Ceason hair Sand Sample Location:

Wateric Sampled

Received

Torr Amund

Water - Waste Whiter

08/18/2022 7.46 the BH 08/18/2002 10:25

Standard

Test Parameters ITEM

BOD (5 DAY) TEST

Phosphorus - Total

RESULT ND

UNITS rigit. mi.

2.0 0.093 METHOD'S ANALYST TESTED TIME SM 6210 B

9,000 PMS

08/15/2022

CL 08/25/2022

Laboratory ID#: 22234115-02

Barrule #:

Collection Address: Cossen Field Lawn

Matrix

Sampled Received

firm-Around:

Weter - Wests West

Dy: 84 08/18/00022 7:46 08/18/2022 10:25 By

Starrilland

Test Parameters

Sample Location:

ITEM BOD (S DAY) TEST Phosphorus - Total

RESULT NO

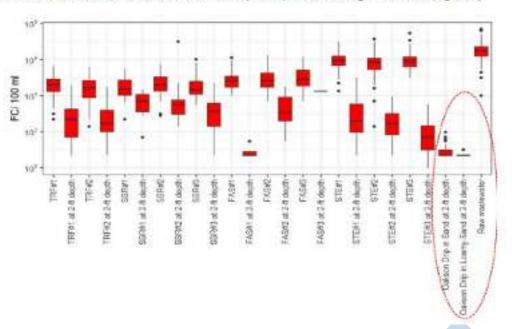
UNITS regit.

ML. 20 SM 5210 B

08/16/2022

0.210 regi.

SM: 4500-P

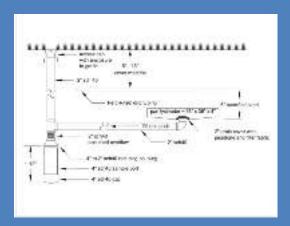

a. 08/28/2022

Attached please find the laboratory perbitor strameter list.

Approved By: Lab Marageri

4.1 Fecal indicator bacteria (or fecal coliform) removal

Fecal coliform is commonly used as an indicator of public health safety. It is generally accepted that fecal coliform densities correspond to the concurrent presence of human pathogens and that the present vertical separation requirement between the point of wastewater dispersal and groundwater required in 310 CMR 15.212 is partially based on this metric. The Perc-Rite* Drip Dispersal System exhibited the lowest density of fecal coliform compared with all technologies sampled at either the exit point of the treatment device or below the two-foot sand layer beneath the soil absorption system receiving the effluent (Figure 2).


	Oakson Field Loam													
Date	Fecal coliforni (MPC 7000 mil)* Pared dile Comily bile	Facel colliform persylves e.ii- easorrel.a	3006 (mg/1)		Alludinity (red cares)	MAN MAN	NOS Projeto	19 (49/1)	TICH (mg/l)	TH (mp ^{T)}	TS5 (mp.7)	pili	lengera lancifo	00 FaS
5/20/2001	<10		NO.	40	320	ND	0.51	0.056	1.7	42.21	NO	7.00	14.6	0.00
0/4/2021	<10		NO.	23	740	ND	0.37	0.056	1.3	14.47	HD.	0.64	15.4	6.46
6/17/2021	-:10			12	370	NO	0.48	0.052	1.4	18.78		6.93	17.9	8.08
7/8/7001	10			7.5	3/10	ND	0.37	0.058	0.92	8.79		6.91	19.7	7.59
7/22/2001	<10			6.0	3/0	ND	0.11	0.07	1.2	10.13		0.63	215	7.2
8/12/2001	<10			8.6	340	ND	2.6	0.057	0.0	12.3		6.3	21.8	635
8/26/2003	410			34	330	ND	ND.	0.058	1.5	25,903		6.81	22.8	751
9/9/2021	<10			6.3	300	ND	0.54	0.058	1.1	7.94		7.1	214	720
9/20/2001	<10			33	310	ND	0.63	0,020	1.1	15.72		7.01	21.2	7.71
10/6/2021	+20			0.55	230	ND	0.6	33.0	6.3	2.26		6.52	12.1	8.53
10/21/2021	10		HD.	86	240	ND	0.82	0.052	1.1	25,72		6.55	15.5	5.00
11/10/2021	<10		M2	24	240	ND	0.59	0.077	0.78	25.37		6.79	14.2	6.13
11/19/3021	<10		NO.	25	2/0	ND	0.41	0,053	0.79	26,2		7.05	13.3	6.25
11/90/2021	10		NO.	22	240	ND	0.47	0.051	0.8	22.27		7.07	10.4	8.37
12/15/2021	410		HD.	25	240	ND	0.21	NU	0.84	27.05		6.56	9.9	9.11
12/40/2021	<0.0		HD.	77	740	NB	10050	0.05	0.75	27.787		4.11	8.0	9.41
1/11/2062	<10		NO	33	2/10	ND	0,007	0,055	0.79	10,977		0.87	7.1	0.64
1/26/2002	100		H.S	25	210	ND	0.076	0.052	0.74	25,508		7.2	>	11.4
2/6/2022	410		HD.	31	200	ND	0.11	0.05	0.89	12		6.85	4.7	11.5
4/19/0002	<0.00		HD.	45	710	NB	111000	0.000	0.7	44 750		6.54	19.6	11.7
3/8/2022	<10		NO	34	220	ND	0.05	0.039	0.57	24.62		7.00	5	11.0
5/22/2002	100		H.S	22	260	ND	0.051	0.033	0.84	22,531		6.66	6.6	10.5
\$10810002		3.1		35	8.00	NB	BD.		0.88	16.695		7.06	7.7	10.1
4/5/2027	<0.00		H2	24	790	NIX			28	74,890		6.91	8.5	104
4/19/2002	<10		H2	20	290	ND				23.70		6.93	10.5	9.81
4/25/2002		:		24	2.0	ND	0.11		0.26	24.57		5.65	20.7	10.5
5/5/2022	<10	_	HD.	22	540	NO	00005	0.029	0.5	19.585		5.73	20.55	9.58
5/17/2002	-:10		H)	14	800	NB	mer	0.144	0.95	201-007		7.09	14.4	917
5220,2002				13	320	ND	ND.		0.39	18315		67	15	6.54
0/7/2022	<10		NO	12	330	ND	0,020	0.032	0.06	16,919		6.30	15.0	6.54
6/75/2002	30		HD.	34	593	NO	0.35	0.00		15.15		6.84	17.5	8.00
6/28/2022		eri .		18	3/10	NB	0.16		0.95	15.11		644	18.2	3.48
2/2/2002	<10		H2	12	3/10	ND	9.13	0.024	0.96	12.99		6.66	18.6	7.36
7/12/2003	<10											0.67	10.4	7.21
dayana	×110		HD.	12	640	NIC	80	0.057	0.944	17.399		6.68	2016	5.47
7/25/2002	-20	5.2		8.8	3/10	NB	ND	0.000	0.95	9.775		6.47	22	5.91
7/27/2002	<10			- mari					2000	2.11.5		6.67	213	5.07
8/3/3022	e10		NO.	17	2/0	ND	0.30	0.01	1.1	18.30		0.00	21.4	5.2
all all a mark	- 10		100	44	200	11164	40.00	2.274	in 4	40.00	1		227	

					Oak	eon	Field	Sand						
Dele	Front colliarm (Uniques mi) somethic conty ab	ental collors (assyste as) escorotio	HOUSE (mp/h)	HOS degle	Alcalinity jugh careg		1000 (1000)	ne negřa	uus japiu	TH Depth	T55 (mg/s)	μН	Tempera ture (Y)	_
5/20/2021	510		140	52	62	NB	0.55	0.041	0.57	58.55	2.4	5.64	14.8	8.79
6/0/2001	910		200	10	110	5.00	¥ 2	0.044	11hh	15.0%	10	Nex	15.6	9.0%
0/17/2021	20			E	25	ND.	0.5	0.12	0,00	36.36		0.57	17.6	0.90
7/8/2021	410			23	25	NU	0.45	0.61	0.76	14.22		5.81	10.7	8,61
7/22/2021	×10			90	19	ND	ND.	0.0	0.88	00.555		5.06	23.7	8,08
89 139 20 21	570			111	35	6.00	0.02	15	1	11.47		N.NA	21.9	C20s
4/26/2021	<10			24	85	ND.	ND	1.1	0.78	24.283		6.7%	22.9	7.96
9/9/2021	20			2.4	7.2	ND.	0.54	1.7	-	10.54		0.02	21.5	6.14
3/25/2021	50			24	A0	NU	0.65	1.4	1.1	25.75		5,88	21	8.26
20/0/2021	51.			5.6	74	NO	0.88	5.2	1.4	6.43		8.50	19.1	8,94
10[21/2021]	101		200	- 81	46	5.0	1	2.7	1.1	441		6.78	181	8.7
11/10/2001	50		ND	27	50	ND.	0.58	1.5	0.77	28.35		0.36	14.1	5,00
11/08/2011	20		140	23	50	NU	0.42	2.4	0.98	24,4		5.78	15	10
11/90/2011	×10		1402	80	54	NU	0.44	2.3	0.97	23.41		6.75	10.8	10.5
17/16/2021	910		1000	27	51	6.00	0.12	2.7	1.7	24.50		Nex	9.7	11
12/20/2021	<10		MD	18	59	ND.	0.078	2.8	1.2	19,278		6.00	8.7	11.3
1/11/2022	20		NU	21	64	NU	0.072	2.3	0.95	22,022		554	6.5	11.5
1/26/2022	41.		140	25	42	0.58	0.17	2.3	1.4	2457		5.56	4.2	11.9
1/8/2011	98		3.5	90	45	0.51	0.23	3.53	1.8	12.08		5.11	4.7	22.7
2/23/2022	- 31		9.3	28	- 31	0.0	0.025	2.75	1.2	29.285		9,90	5.8	11.6
5/0/2022	50		ND	24	37	ND.	0.051	2.00	0.76	24,831		0.14	5.2	12
3/22/2022	52		140	136	45	NU	HD	5.06	1.5	29.325		5.05	- 6	11.1
312012022		27.9		14	57	NO	0.051		1.4	15,451		8.47	4.7	10.8
4/4/2007	C10		200	124	94	6.00	19960	1.94	17	In 260		E11	2.5	111
4/15/2022	20		MD	8.6	56	ND	ND	1.96	1	9,525		621	10.2	10.2
4/25/2022		7.4		7.85	65	NU	0.054		4.5	5,454		5.48	10.4	10.4
SYSTATE	v10		2.5	9.2	5.5	ND	0.058	0.387	0.94	00.798		1100	20.7	10.5
5/12/2022	570		100	44	64	6.00	80	1.64	1	101 475	7			430
5/23/2022		1		17	21	ND.	0.11		0.88	17,99	1		15.1	9.23
6/7/2022	<10		ND	14	61	ND	0.03	1.60	0.30	14/7		133	15.7	9.20
5/25/2022	×10		140	14	55	NU	0.21	1.5	1.1	15.51		8.55	17.3	8.92
siminar		88		13	54	50	0.33			14.11		5.500	18.4	X 55
7/7/2022	<10	-	MO	24	91	50	0.21	1.8	0.91	25.12		656	18.9	8.0
2/12/2022	<10			_					_			626	19.6	840
7/20/2022	*10		140	21	42	NU	0.051	1.6	0.84	20,500		5.01	10.6	1261
1/25/2022	-	4.1		91	44	50	0.12		0.67	50.79		6.10	23.9	0.68
distant	910	716		~					4.00	20070		5.18	21.b	1.79
8/2/2022	ctil		MO	25	- 0	ND	0.15	1.3	0.64	25.76		5.85	21.6	7.79

The results suggest that:

- Regarding fecal indicator bacteria, the Perc-Rite® Drip Dispersal System achieved the highest level
 of removal compared with other treatments.
- Nitrogen removal in the drip system exceeded 50%, without consideration of any concentrating effects of evapotranspiration.
- Phosphorus attenuation exceeded all other modes tested. The average total phosphorus in percolate beneath the sand test cell averaged 1.8 mg/L (± 0.3, p=.05, n=34), and beneath the loamy- sand test cell 0.68 mg/L (± 0.11, p=.05, n=34). This latter level compares favorably with technologies presently under evaluation through the Pilot Approval process in the Commonwealth which requires those technologies to achieve levels less than 1.0 mg/L total phosphorus.
 - Other indicators of wastewater stabilization such as BOD_{5-day} and ammonia levels were assayed and compare favorably with many advanced onsite treatment technologies.

Collection 6" below emitters

CERTIFICATE OF ANALYSIS Barnstable County Health Laboratory (M-MA009)

Report Prepared for:

Colomn

Order #:

G24000459

Report Dated: 3/1/2024

arc - Dakson Sandflrom Lye

6 Sargent Street Gloucester, MA, 01980

Laboratory (DR: Studyne P Son Tausman UST Calendary Additional Sample Location: Oakson Sa	nd Lys		31 80	latric ampted in second um Around	Wests Water someone someone Standard		ty: Into ty Tomorety	
Dischemical Coygen Demand 50 Heet	ny les diction H-1011	usine	HL.	wa.	M+11000 K	MAIN	1 198000	IM-
900 (61	3.4	ngt	2.0		\$4,52100	ano.	2/24/2024	
Total Suspended Solide analysis	*15111	usiis	HL.	W3.	MATRICE	ONNERS	1 1111111	en.
Total Susecucied Selids	2.4	met	2.0		SM 25400	LAP	209/2024	

Laboratory IUT		Ų.	olric:	West: Water					
sumple it combustine use		51	angled.	3/21/08/04			142		
Collection Address:		F0	postwort:	3/24/3034			transcile		
Nample Loudon - Datamilia	and ge	1	an Around	Manufact					
sanchemical strygen (remain). 61	10000	usma	н	W2.	M+11430 K	A.	MINI	0.000	
900 101	3.2	nst	2.0		\$ 9 52 100		MO.	201204	
Total Suspended Solids analysis.	*131L1	usma	NL.	M3.	METHOD		NUTS I	IL BILLEY	
Total Superinded Sellida	40 /	met	2.0		54.25480		LAP	209/2024	

State of Vermont Department of Environmental Conscivation Agency of Natural Resources Drinking Water and Groundscater Protection Division

WASTEWATER SYSTEM AND POTABLE WATER SUPPLY INNOVATIVE AND ALTERNATIVE (I/A) TECHNOLOGY GENERAL USE APPROVAL

LAWS/REGULATIONS INVOLVED

10 V.S.A. Chapter 64, Potable Water Supply and Wastewater System Permit Wastewater System and Potable Water Supply Rules, Effective November 6, 2023

Applicant and I/A Approval Recipient:

Oakson, Inc. 6 Sargent Street

Approval Number: 2025-01-R0

Date Issued: 02/21/2025

Gloucester, MA 01930

Date Expires: 05/01/2027

rob@oakson.com 978-282-1322 x801 www.oakson.com

Soil Based
Treatment and
Disposal

Same hydraulic unit, pump, control panel, and drip tubing

Thank You

Questions?

