

Pump Tank and Pretreatment Inspection & Troubleshooting

> Sara Heger University of Minnesota sheger@umn.edu

Evaluate Presence of Odor

Odors are improper venting

Check seals

LidConduit

Tank Access

- a. Access location:
- b. Located at grade?
- c. If 'No', how deep is lid buried?
- d. Risers on tank?
- e. Evidence of infiltration in risers?
- f. Lids securely fastened?
- g. Lid in operable condition?

Current Tank Operating Conditions

a. Liquid level relative to inlet

b. Maximum depth

Current Tank Operating Conditions

- c. Height with respect to alarm (inches):
- d. Evidence liquid level has been higher:
 - Stains
 - Material hanging on the lid
- e. Evidence liquid level dropped without pumping?

Pump

- Pump under access
 - Reachable from surface
 - ► Removable
 - ► Note if not

Pump Should Be

- Elevated off bottom
 - ► Storage
- Covered with effluent
 - Protection

Pump Placement

- Pump must be <u>up</u> out of the solids layer
 - unless it is a grinder pump
- A block is common
 - but not recommended
 - hard to find when tank is full of sewage
 - pump torque will move pump
 - no screen

Pump Removal?

- Pull chain or rope present
- Make sure it is secure when leaving the site
- Loose ropes sink pumps

Snake Removal?

Discharge Assembly

Quick disconnect present?

Fernco is not a

Electrical Components Sealed and Watertight?

Electrical Conduit Sealed?

How is the Pump Operated?

- Float Piggy back
- Control panel
 - Float Demand
 - Panel functions
 - Running time clock
 - Event counter
- ► Timer panel

Does the Pump Work?

On/ OffAlarm

How to Check?

- Lift the float
- ► Fill the tank to operate
- Run a dose
 - Check gpm {flow rate}
 - ► Gallons per inch x inches ÷ time = gpm

Drain Back?

Weep hole
Check valve
Freezing

Is the Pump the Right Size?

► Flow

rate that water needs to be moved

Pressure (or head)

the pressure required to generate the required flow

calculated by knowing

- elevation difference
- Friction in pipes and fittings
- required pressure at distal end

Using a Pump Curve

One-half horsepower

- the turbine pump can produce high head at low flows
- the other pump cannot produce much head but has high flow
- notice the curve shape

Alarm?

Separate circuits?

Shut off circuit in basement for alarm

Pump still operational?

Only lift it up if you can silence @ panel

Be careful as lifting to not damage

Electrical?

Electrical Components Sealed and Watertight?

Electrical Conduit Sealed?

Tank Pumping Recommended?

Pretreatment Units

Why Aerate?

Aerobic environment

- Has dissolved oxygen
- Aerobic microbes break down waste
 - Faster than anaerobic treatment
 - ► Little odor

Types of Aeration Devices

Aerobic Treatment Units (ATUs)

Saturated units - bubble air through water

Media Filters

Unsaturated units - diffuse air through pore space

Aerobic Treatment Unit

Aerobic tank

- Saturated environment (liquid)
- Incorporates dissolved oxygen (2 mg/L)
 - Organisms break down organic matter into
 - ► CO₂
 - ► H₂O
 - Produce new organisms/cells
- Higher quality effluent than septic tank
 - Less TSS
 - Less BOD
- Bacterial cells accumulate, must be dealt with

Comparisons of Domestic WW Effluent

Constituent	Septic tank	ATU
BOD (mg/L)	140-220	5-50
TSS (mg/L)	50-100	5-100
Total (N mgN/L)	40-100	25-60
Total P (mgP/L)	5-15	4-10
Fecal col/100ml	1 million to 100 million	1,000 – 10,000

Siegrist, 2001

Why Aerate?

Aerobic environment

- Has dissolved oxygen
- Aerobic microbes break down waste
 - Faster than anaerobic treatment
 - ► Little odor

Types of Aeration Devices

Aerobic Treatment Units (ATUs)

Saturated units - bubble air through water

Media Filters

Unsaturated units - diffuse air through pore space

Aerobic Treatment Unit

Aerobic tank

- Saturated environment (liquid)
- Incorporates dissolved oxygen (2 mg/L)
 - Organisms break down organic matter into
 - ► CO₂
 - ► H₂O
 - Produce new organisms/cells
- Higher quality effluent than septic tank
 - Less TSS
 - Less BOD
- Bacterial cells accumulate, must be dealt with

Comparisons of Domestic WW Effluent

Constituent	Septic tank	ATU
BOD (mg/L)	140-220	5-50
TSS (mg/L)	50-100	5-100
Total (N mgN/L)	40-100	25-60
Total P (mgP/L)	5-15	4-10
Fecal col/100ml	1 million to 100 million	1,000 – 10,000

Siegrist, 2001

Layout

- ATU positioned after septic tank or trash tank
 - Reduces amount of solids entering ATU
 - Provides some flow equalization

Aerobic Treatment Unit

Typical components

ATUs: Miniature WWTP

- Biological processes are well understood
- Mix microbes, wastewater, and dissolved oxygen

Hydraulic and Organic Loading

Two main design parameters

- Hydraulic Loading
 - Rate that water will pass through the device
 - Must provide sufficient retention time
 - Wash-outs can occur on laundry day
- Organic Loading
 - Organic matter is food for microbes
 - More food than microbes poor quality effluent
 - More microbes than food high quality effluent

What should it look like?

- Air operating
- ► DO > 2 mg/l
- Musty odor
 - Rotten eggs
- Brown color-Chocolate
 - Black
 - ► Clear
- Settling
 - ▶ 50% in 15 min.
- Effluent quality

DO Testing

Foam

► Color

- ► White & Soapy
- ► Gray/ Black

Low DO

► Air problems

System

- ► Owner
- High organic loading

Microbial Biomass Management ~Wasting

- Sludge wasting is required to reduce the quantity of biomass in the system.
- Frequency depends on the waste load into the system. High organic loading requires larger microbial population to transform waste
- SG: 30 minute settle ability test is used to determine when system needs pumping.
- ► FF: Plugging of media {50%}

Media Filters

Description

- Watertight structure with media of particular specifications
- After being collected in a processing tank, effluent is distributed (by pressure or gravity) over the surface of the media
- Media provides surface area for bacteria and other microorganisms to treat the effluent
- Aerobic treatment zone

Description

- Media is typically unsaturated
- The presence of air promotes establishment of favorable microorganisms
- Effluent percolates through media to under-drain system where it is collected for further treatment

Single-Pass Media Filters (SPMF)

- Usually pressure dosed, but some are gravity fed
- Applied wastewater infiltrates the filter surface
- Percolates through the filter only once, then flows to the payt treatment
 - then flows to the next treatment step
- Treated effluent then flows to STA
- Usually quite effective in removing BOD, TSS, and pathogens

Recirculating Media Filters (RMF)

Multi-pass filters

- Wastewater is treated by mixing effluent that has passed through the media bed with raw septic tank effluent.
- Filtrate from the media filter is split
 - A portion returns to the recirculation tank for more processing and a portion goes out for final dispersal.
- Recirculating media filters are effective in reducing BOD, TSS, and total nitrogen.

Flow Path in a RMF

Troubleshooting Media Filters

Problems in Filters

Assess system

- Infiltrative surface
- Replacement activities
 - Peat
 - ► Plantings
- Distribution system
- Drainage system
- Effluent quality

Accessibility

Operation

- Surface of filter
- Drainage operation
- Effluent quality

► Maintenance

- Distribution System
- ► Media issues

Ponding

- Ponding is a problem
 - Single pass
 - ► Recirculating

Media selection

- Peat
 - Depth
- ► Textile
- Wetlands
 - Plants
- Loading rate
 - ► BOD
 - ► H2O

Ponding- O2 relationships

Overloading

- Water {Hydraulic}
- Food {Organic}
- Oxygen flow

Media

Media quality

Sand

- ► Synthetic
- Wetland vegetation
- Quantity-
 - Depth
 - ▶ Peat
 - ► Synthetic

Media depth-

► 24" typical ► Organic ► Dissolve ► Compact ► Replace ▶ < 25% ▶ 6″ ▶ Rebuild

Constructed Wetland

- ► Vegetation
- Levels
- Sizing
- Distribution
 - ► Ponding

Drainage

- Saturation- No air movement
- Design- [float sep.]
- Plugged drainage-- Ponding

Distribution in Filter

- Squirt height
- Uniform design
- Pattern
 - ► Listen

Media filters

Single pass

Container integrity

- Water tightLids/ Access
- Insulation

Questions?